Resampling methods for improved wavelet-based multiple hypothesis testing of parametric maps in functional MRI

نویسندگان

  • Levent Sendur
  • John Suckling
  • Brandon Whitcher
  • Edward T. Bullmore
چکیده

Two- or three-dimensional wavelet transforms have been considered as a basis for multiple hypothesis testing of parametric maps derived from functional magnetic resonance imaging (fMRI) experiments. Most of the previous approaches have assumed that the noise variance is equally distributed across levels of the transform. Here we show that this assumption is unrealistic; fMRI parameter maps typically have more similarity to a 1/f-type spatial covariance with greater variance in 2D wavelet coefficients representing lower spatial frequencies, or coarser spatial features, in the maps. To address this issue we resample the fMRI time series data in the wavelet domain (using a 1D discrete wavelet transform [DWT]) to produce a set of permuted parametric maps that are decomposed (using a 2D DWT) to estimate level-specific variances of the 2D wavelet coefficients under the null hypothesis. These resampling-based estimates of the "wavelet variance spectrum" are substituted in a Bayesian bivariate shrinkage operator to denoise the observed 2D wavelet coefficients, which are then inverted to reconstitute the observed, denoised map in the spatial domain. Multiple hypothesis testing controlling the false discovery rate in the observed, denoised maps then proceeds in the spatial domain, using thresholds derived from an independent set of permuted, denoised maps. We show empirically that this more realistic, resampling-based algorithm for wavelet-based denoising and multiple hypothesis testing has good Type I error control and can detect experimentally engendered signals in data acquired during auditory-linguistic processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet shrinkage versus Gaussian spatial filtering of functional MRI data

Objective The comparison between wavelet-based simultaneous multiscale denoising/hypothesis testing and single scale Gaussian spatial filtering followed by statistical testing of brain activation maps is carried out for a simple block-type visual paradigm EPI MRI experiment. Probabilistic wavelet shrinkage provides means to consistently combine multiresolution denoising and hypothesis testing i...

متن کامل

Resampling fMRI time series.

The problem of selecting a threshold for the statistical parameter maps in functional MRI (fMRI) is a delicate issue. The use of advanced test statistics and/or the complex dependence structure of fMRI noise may preclude parametric statistical methods for finding appropriate thresholds. Non-parametric statistical methodology has been presented as a feasible alternative. In this paper, we discus...

متن کامل

Spatiotemporal wavelet resampling for functional neuroimaging data.

The study of dynamic interdependences between brain regions is currently a very active research field. For any connectivity study, it is important to determine whether correlations between two selected brain regions are statistically significant or only chance effects due to non-specific correlations present throughout the data. In this report, we present a wavelet-based non-parametric techniqu...

متن کامل

A New Method for Sperm Detection in Human Semen: Combination of Hypothesis Testing and Local Mapping of Wavelet Sub-Bands

Introduction Automated methods for sperm characterization in microscopic videos have some limitations such as: low contrast of the video frames and possibility of neighboring sperms to touch each other. In this paper a new method is introduced for detection of sperms in microscopic videos. Materials and Methods In this work, first microscopic videos are captured from specimens of human semen. S...

متن کامل

A comparative evaluation of wavelet-based methods for hypothesis testing of brain activation maps.

Wavelet-based methods for hypothesis testing are described and their potential for activation mapping of human functional magnetic resonance imaging (fMRI) data is investigated. In this approach, we emphasise convergence between methods of wavelet thresholding or shrinkage and the problem of hypothesis testing in both classical and Bayesian contexts. Specifically, our interest will be focused o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 37 4  شماره 

صفحات  -

تاریخ انتشار 2007